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ABSTRACT 

The study concerned itself with the investigation of the kinetics of xylan in an inert 
atmosphere. It was found that there were two basic mechanisms for degradation in the 
temperature range studied, nucleation and diffusion. The range of temperatures studied 
was 200-290°C. By comparison to several theoretical models the correct theoretical 
interpretation was based on the best statistical fit of the data. In this way, it was discov- 
ered that a first order nucleation mechanism prevailed over the temperature range 200- 
235OC. A least squares program was developed from an IBM Statistical Package in which 
each model was subject to the same analysis. 

A Carter--Vale& model was obeyed from 240 to 255OC. This model is a diffusion 
type model. In this case, the product layer develops at the surface of the particle. Finally, 
an Avrami-Erofeyev equation was found as the best fit for the temperature range 270- 
29O’C. It is surmised that polymer degradation in the solid state follows heterogeneous 
mechanisms rather than, as previously thought, by nth order homogeneous mechanisms. 

INTRODUCTION 

There are conflicting opinions on the nature of polymer degradation 
mechanisms. Many past analyses have assumed an nth order mechanism 
resembling homogeneous gas phase kinetics [l-4]. On the other hand, there 
is speculation by many investigators [ 5-71 that polymers degrade by hetero- 
geneous solid state mechanisms and, in fact, the classical equation du/dt = 
h(1 - (Y)” is applicable only in certain highly specific cases [ 8,9] and will in 
general be invalid. To completely describe the decomposition of any solid it 
is necessary to know the rate of formation and spatial distribution of the 
nuclei in nucleation mechanisms, and the depth of growth in diffision mech- 
anisms. Hence, the full mathematical formulation of the rate process must in 
general be expressed in terms of both spatial and time coordinates. The 
material used in this study was xylan, an extract of wood and similar in 
structure to cellulose. In the course of achieving a kinetic expression for the 
kinetics of decomposition, several new analytical techniques were created 
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and perfected, including a new instrumental method of analysis, and a new 
statistical technique for the analysis of the kinetic data. 

PREVIOUS RESEARCH ON THE PYROLYSIS OF XYLAN 

It appears that only one paper has been published on the kinetics of xylan 
degradation to date. Shimizu et al. [lo] have investigated the thermal degrada- 
tion of xylan from an isothermal and non-isothermal point of view. The 
xylan used was an extract from beech wood. Analysis of the sample was per- 
formed on a thermogravimetric analyzer. 

Non-i-w thermal kinetics 

It was observed that the weight loss of xylan commenced at 200°C and 
rapidly decomposed, terminating at about 300°C. There was a resultant 70% 
loss in weight of the initial sample leaving a char as residue. Shimizu et al. 
[lo] postulated that the reaction followed the form 

A+B+C (1) 

The rate expression assigned to this reaction for the weight loss is 

*w/dt = kWR (2) 

where, k is the specific rate, n is the order of the reaction, and Wa is the 
weight remaining as reactant. 

The rate constant expression follows the usual Arrhenius form 
k = A~--E/RT (3) 

where, A is the preexponential factor, E is the energy of activation, R is the 
gas constant, and T is the absolute temperature. 

Combining eqns. (2) and (3) and taking the logarithms of both sides, we 
arrive at 

log(--dw/dt) - n log Wa = log A - E/2.303RT 

If two thermograms are used the following equation can be obtained 

(4) 

n= log(-dto/dt), - log(-dw/dt), 

10WR2 - ~OEW,, 

By this method of analysis, these investigators concluded that for the tem- 
perature range 232-29O”C, the reaction followed first order kinetics. It was 
also discovered that below 232°C the value of R was considerably less than 1 
and above 290°C greater than 1. It was postulated that xylan degraded by 
more than one mechanism in the temperature range studied. Above 232’C 
it was found that a simple reaction order could not be fitted to the data. A 
solution to this problem was obtained by progressively fitting the kinetics 
with selected orders of reaction as shown in Table 1. 
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TABLE 1 

Kinetic parameters of pyrolysis for xylan obtained by the Chatterjee method 

Zero order 
reaction 
201-232°C 

First order reaction 

I II III 

232-245OC 245-267OC 267-290°C 

wt. loss of 
reactant (%) 10 17 39 29 

39.9 29.6 17.7 43.6 
log A 17.4 11.4 6.3 16.8 

Isothermal kinetics 

It was assumed from the beginning that xylan followed a first order mech- 
anism and therefore the governing kinetic expression used was 

-dw/dt = kW;, (6) 

Integrating and rearranging, we obtain 

2.303 log W& = -kt (7) 

where Wk is weight remaining calculated according to the following expres- 
sion 

Wk = [(W - W,)/(W, - IL)] x 10.0 (8) 

where, W, is the weight of char, W is the weight of residue, and W,, is the ini- 
tial amount of residue. 

It was found that the data obtained from the isothermal technique dem- 
onstrated that the pyrolysis of xylan obeyed zero order kinetics around 
2OO”C, subsequently followed by a first order mechanism. Shimizu et al. 
[lo] admit the failure of trying to fit the kinetic data by an nth order 

TABLE 2 

Reaction constant and energy of activation for pyrolysis of xylan obtained by isothermal 
method 

Primary 
first order 

Secondary 
first order 

Isothermal Specific reaction 
temp. constant 

(OC) (min-’ ) 

204 0.0102 
216 0.0206 
221 0.0257 

204 0.0053 
216 0.0090 
221 0.0119 

Energy of 
activation 
(kcal mole-l ) 

25.7 

21.9 
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expression. Discrepancies were found below 245OC and above 280°C in 
which the kinetic equations did not follow a simple first order expression. 
Table 2 shows the reaction constant and energy of activation for the degra- 
dation of xylan by the isothermal technique. 

EXPERIMENTAL 

Appam tus 

The instrument used in this study is the DuPont 990 modular thermal 
analysis system. The two functional units are a temperature programmer- 
controller and an X-Y-Z recorder. The temperature of the sample under 
analysis is controlled by the programmer-controller. Variance in the sample 
property, energy absorption or release, weight or dimensional change, etc., 
is read on the Y or Y’ axis as a function of sample temperature on the X axis 
of the recorder. 

Materials 

The sample used in this study was xylan from larchwood composed of 
p-1,4 linked xylopyranose residues. The xylan was obtained from the Sigma 
Chemical Company, St. Louis (product number, X3875). According to the 
manufacturers’ catalog, the molecular weight of this species of xylan was 
evaluated as a.pproximately 20 000. 

Procedure and methods 

The following procedure was used for each run. 
(1) An empty aluminum pan, provided by the Du:?ont deNamours Com- 

pany, was weighed in a Mettler balance. The xylan sample (powdered form j 
was then poured into the pan and subsequently weighed. 

(2) The desired isothermal program was set. The cell was heated to the 
program temperature and allowed to equilibrate. Purge gas (argon) was then 
admitted to the sample chamber through an orifice in the block wall posi- 
tioned midway between the two raised platforms on the left. 

(3) The sample pan was quickly placed in the cell and the cover of the cell 
placed immediately afterwards and the recorder started. 

(4) A two-pen sensitivity range was used in order that the entire analog 
plot remained on paper. 

(5) When the pen(s) achieved a horizontal position after-a great length of 
time (indicating the reaction was completed) the recorder and DSC were 
turned off. 

(6) The sample pan was taken from the cell and weighed. The final residue 
weight was recorded. 
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Analysis of raw DSC thermograms 

The first step in the kinetic analysis of xylan degradation is to determine 
the baseline of the analog output. This is done by extending the horizontal 
position of the curve till it meets the initial part of the curve. Partial areas 
were determined at pre-designated time intervals by an Amsler planimeter. 
Each interval of time had five area measurements, in which the mean value 
of the area was chosen as the final value for the kinetic analysis. If one takes 
the partial areas and divides them by the total area under the curve, one may 
obtain values of Q! for the selected temperature. Plotting the fraction reacted, 
QI, vs. time gives us the classical decomposition cu177e. The set of a! vs. time 
values were then fed into the least squares polynomial program to find the 
model of best fit. 

TECHNIQUE OF ANALYSIS 

This technique expands the right-hand side of the general equation for the 
kinetics of solids. Let us assume that the general differential form for any 
solid decomposition reaction is 

dci 
dt= kf(a) 

Integrating the above equation gives us 

a da! s- =kjdt 
() fW 0 

or 

2 da! 
g(c) = J f. =kt 

0 

(9) 

(10) 

(11) 

If we were to plot g(o) on the y axis and time, t, on the x axis, we would 
notice slight or major deviations from the predicted straight line. This 
method fits a polynomial equation to the data by means of a least squares 
analysis, whereby several curve fitting tests are applied in order to determine 
which mathematical model agrees with the data. In this method the indepen- 
dent variable t, is expanded in a power series and then subjected to a variety 
of statistical tests to determine the extent of its linearity. Obviously, from 
inspection of the empirical polynomial equation one can see from the magni- 
tude of the coefficients its deviation from a straight line. In addition, from a 
purely mathematical analysis, we can also conjecture about the physical phe- 
nomenon that the xylan sample underwent. For example, if we subject the 
data to an Avrami-Erofeyev equation and perceive deviations from linearity 
at large values of time, we can conclude that the kinetics of the reaction are 
no longer obeyed when those deviations become manifest. In other words, 
we can conclude that either the model does not fit the data accurately, lead- 
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ing to the assumption that the sample reacts by a completely different mech- 
anism, or there is a change in mechanism occurring at some interval, in which 
the mathematics is detecting its incipient deviation. Since the mechanics of 
polynomial regressions are well established, the power series type formula 
was chosen for both methods. All of the expansions reduce to a power series 
form, thus facilitating handling of the data. A tremendous saving in compu- 
ter time comes about because the same functional relationship is used for all 
the final statistical analyses. The following derivation of the power series as 
it is used in the polynomial analysis will be given below. 

Let us represent the general power series in the following form 

c akt’ = a0 + a,t + a2t2 + - - - 
k=O 

(12) 

where, t is the time reacted’, and ak is the coefficient of the series. 
We shall concern ourselves with the problem of approximating to a given 

function. 

Y = f&) 03) 

where, g(a) is the integrated form of the solid state model = y 

kt = f&) 

by means of a sequence of polynomials fn(t) of the form 

f,(t) = a0 + a,t + a2t2 + . . . + ant 

This approach was used throughout the study. 

(14) 

DISCUSSION AND CONCLUSIONS 

We will take the analysis of one typical run to show the technique of anal- 
ysis as well as give a clearer understanding of the results. For example, let us 

60 
r 

Fraction Reacted (e 1 

Fig. 1. Fraction reacted at 24O’C. 
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TABLE 3 

Kinetic models used in this study 

(1) First order nucleation 

ln(1 -a)=h’r 

(2) Prout Tompkins mechanism 

In[cyl(l -a)] = kf 

(3 ) Zhuravlev and Lesokhin mechanism 

r. 

2 2kD 
(l_l&)m-l ‘qz-t 1 

(4) Jander diffusion 

[l - (1 - CU)~‘~]~ = 2kD/r2 x t 

(5 ) Kroger-Ziegler mechanism 

[l - (1 -cY)~‘~]~ = 2k/r2 x In f 

(6) Contracting geonstry where n = $ 

1- (1 -cY)~‘~ = kt 

(7) Contracting geometry. where n = f 

1-(l-a~)“~=kt 

(8) Two dimensional diffusio,l controlled 

(1 -a) In(1 -a)+a=kt 

(9) Ginstling Brounstein mechanism 

1 -- ;a-- (1 - &)2’3 = kt 

(10) Power law where n = 1 

a=kt 

(11) Komatsu and Uemura mechanism 

2120 
[(l + &‘a - 112 = - t 

r2 

(12) Avrami-Erofyev model where r = 2 

In(1 - ar)-l = kt2 

(13) Avrami-Erofyev model where r = 3 

ln(l - a)-’ = kf3 

(14) Zero order mechanism 

1-(1-a)=kt 

(15) Second order mechanism 

1 
--l=kt 
1-CY 

(16) Avrami-Erofyev model where r = 4 

ln(l -a)-’ 3 kt4 
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TABLE 3 (continued) 

(17) Avrami-Erofyev model where r = $ 

In(1 -@-I = kt0.5 

(18) Avrami-Erofyev model where r = 1.5 

In(1 - a)-1 = hfl.5 

(19) Avrami-Erofyev model where r = 2.5 

In(1 -@-I = h&5 

(20) Carter-Valensi model where t = 0.1-0.9 and 1.1-1.9 

t- (a - 1)(1 - (Y)2’J - [ 1 + (2 - 1) a]2’J 2hD =- 
(z-l! r* 

(21) Hulbert model where z = 0.1-0.9 

2-[(1+(2-I)cY]2’3-(2-1)(1-cz)2’3 

(z-1) 
= ‘F= kf 

(22) Empiricai order where n = 1.1-1.9 

-1 =kf 1 
(23) One dimensional diffusion 

CY* =kt 

(24) Exponential rule 

In Q = kf 

(25) Power law where n = 2 

CI* =kt 

(26) Power law where n = 3 

$ =kt 

(27) Power law where n = 4 

C$ =kt 

(28) Empirical exponential law 

in (Y = In t 

take the isothermal run at 240°C. The first step in the analysis of the data is to 
find the Q vs. time values. These values were obtained as shown earlier, and 
are shown in Fig. 1. The next step is the statistical analysis of the data 
according to the method outlined in the Techniques of Analysis. As explained 
earlier, the data were treated according to a power series technique because 
of its inherent simplicity and its amenability to computer methods. The pro- 
gram developed was a least squares polynomial program. Table 3 lists the set 
of kinetic models used in this study. The final result of the analysis of vari- 
ance for the least squares statistical regression of the data shows the progres- 
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TABLE4 

Polynomial regression of degree 1 by the Carter-Valensi model where2 = 0.9 at 240°C: 
table ofresiduals. 

Observation no. tvalue(min) g(a)value g(a) estimate Residual 

1 2.00000 0.00022 -0.00575 0.00597 
2 4.00000 0.00483 0.00400 0.00083 
3 6.50000 0.01403 0.01620 -0.00217 
4 9.00000 0.02507 0.02840 -0.00332 
5 11.50000 0.03759 0.04059 -0.00300 
6 14.00000 0.04970 0.05279 -0.00309 
7 16.50000 0.06220 0.06498 -0.00278 
8 19.00000 0.07565 0.07718 -0.00153 
9 24.00000 0.10578 0.10157 0.00421 

10 29.00000 0.13049 0.12596 0.00453 
Ll 34.00000 0.15575 0.15036 0.00539 
12 39.00000 0.17667 0.17475 0.00192 
13 44.00000 0.19335 0.19914 -0.00580 
14 49.00000 0.22181 0.22353 -0.00173 
1 5 54.00000 0.24849 0.24793 0.00057 

sive fit of the g(a) vs. time for polynomials of degree one or higher. The 
program terminates when the polynomial of the best fit as determined by 
the improvement in terms of the sum of squares is reached. It should be 
pointed out that the highest polynomial of any physical meaning is that 
equation of order one with respect to time. Therefore, even though the pro- 
gram terminated with a third degree polynomial, we may only take the anal- 
ysis of variance for a first degree polynomial. Theoretically, the value of the 
intercept should be zero. Unfortunately, due to machine as well as human 
error, slight deviations from that value will almost inevitably occur. The 
slope of the line represents the pseudo rate constants as shown in Table 3. 
What is the criterion for selecting one model over another? This question 
can be answered as follows. The F value is often used as a statistical fit test 
in many analyses. This same approach was used here in which it was found 
that comparing the F values of the different models and choosing the larg- 
est F value (the larger the F value the closer is the curve to a straight line) 
a uniform rule was established to determine goodness of fit. 

As an example, we shall look at the results of a run taken at 24O”C, in 
which it was found by the method above that the Carter-Valensi model for 
z = 0.9 fitted the data best, as shown in Table 4 and graphically in Fig. 2. 
The first column is the data point count. The second column, t, represents 
the time parameter (in mm) for the reaction. The third column represents 
the value of g(cy) for each value of cy from Fig. i. This is the integrated func- 
tion, of the solid state differential equation. In this case, the function is a dif- 
fusion model. The last column is the difference between the experimental 
g(cr) and the “calculated” g(a!). 

Proceeding in like fashion through a wide range of temperatures we can 
slowly establish an overall picture of the reaction mechanism. Changes of 
mechanism can be detected by the inability of fitting the data to a first order 
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Fig. 2. Polynomial regression of the Carter-Valensi model where z = 0.9 at 24O’C. A, 
g(a); 0, estimated g(a). 

regression. In this case, we would note where the incipient deviation from a 
straight line is located and apply the computer program at that point to 
search for the best model. Thus, a history of the reaction is developed on a 
logical basis. By this technique the following conclusions have been reached 
on the pyrolysis of powdered xylan. 

First order nucleation mechanism for the range 200-235°C 

In this range of temperatures, pyrolysis times ranged from about 79 to 80 
min in extent. III all isothermal runs a large exothermic peak manifested 
itself early in the reaction. 

It appears that the nucleation mechanism commences at sites on the par- 
ticle in which imperfections of a physical nature are present. The undulating 
features of the reacted particle seem to bear out the hypothesis that trapped 
gas attempts to escape fEom the particle early in the reaction. The sites 
appear to form in a random fashion. 

The Carter-Valensi model for the range 240-255’C 

The derivation and discussion for this model are given elsewhere [ll]. 
Once again, the same procedures were used as in the nucleation models to 
End the best fit and compared to evaluate the difference between the corre- 
sponding empirical equations. It must also be pointed out that no empirical 
equation of the power type had an integral exponent, leading to the assump- 
5on that a more complex mechanism exists. The DSC plots show the exo- 
thermic peak shifting closer to the beginning of the reaction and inevitably 
becoming larger and steeper. 
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The Aurami-Erofyev model for the range 275-290°C 

This model where r = l/2 is the special case of one dimensional growth. 
Here, there is a zero nucleation rate (saturation of point sites). In addition, 
the slopes of the DSC output were almost vertical with respect to the exo- 
thermic peak. 

It is clear that, although an empirical order can be fitted to the data at 
any temperature, it should be understood that any value of the exponent, it, 
for the kinetic expression da/dt = h(1 - Q)” wh.ich is not integral or which 
has not been derived from some mathematical model has no physical mean- 
ing and thus cannot help us to understand the mechanism. 
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